Siskiyou wildflowers – 4/10/11

The wildflower season is beginning here, during a strange spring with early warmth and late snows, but truth be told the first wild flower to bloom at our place was back in February, and it was this one:

Dandelion Taraxacum officinale

Look familiar? It’s the much-maligned dandelion, Taraxacum officinale. If it weren’t such an invasive and persistent plant, we would find the flowers quite attractive: they’re numerous, vivid yellow against a basal rosette of dark green leaves, and have an attractive seedhead. The seeds exemplify a smart strategy too, in that they don’t require pollination to develop. You may have noticed this when looking into a container where you have discarded dandelion flowers or plants that you uprooted. The buds—even if not open when the plant was pulled—often go on to open and develop seeds via a process called apomixis. The seeds will be viable.

The first two showy blooms of what we usually call wildflowers began a couple of weeks ago with Henderson’s Shooting Star, Dodecatheon hendersonii

Henderson’s Shooting Star, Dodecatheon hendersonii

and the Trout Lily or Fawn Lily, Erythronium hendersonii.

Erythronium hendersonii flower underside

It is a good year for the erythronium, with many having 2 or even 3 flowers, and both leaves and flowers often larger than we’ve seen them in the past.

Erythronium hendersonii, flowers and leaves

The darkly mottled leaves give these plants their common names of Fawn Lily or Trout Lily, and I find them quite beautiful though hard to photograph. The surface is never quite in focus; perhaps there’s a covering of microscopic hairs that interfere with my camera’s auto-focus function.

Erythronium hendersonii, leaf

Individual Trout Lily blooms have a short life; in a week they’re fading and withering. But we will be able to find them for a few weeks longer as they bloom at higher elevations or in shadier spots. Mixed sun and shade seems to be their preference.

This plant on a steep sunny slope in scree has, I think, been the “victim” of aggressive wildfire fuel reduction efforts about a month ago that removed most shrubs and small trees and caused decomposed rock from above to come down the slope. Few plants of any sort appeared through the scree, and I’d be surprised if the several erythroniums I saw today are there next spring.

Erythronium hendersonii in scree

A plant with four buds, more than we have ever seen before.

Erythronium buds 5687

Both of these native wildflowers are named for “The Grand Old Man of Northwest Botany“, Louis F. Henderson (1853-1942). You can read more about him here, and even see a photo of him with a smile on his face. Nineteenth-century scientists maintained grim demeanors for their portraits (perhaps just conforming to the expectations of their time, but of the people I see on television these days the ones who look truly happy are mostly field scientists like geologists, palaeontologists, and botanists. Cosmologists and astronomical scientists also look cheerful and absorbed in their future work. Zoologists generally look concerned, as they’re usually asked to talk about how the creatures they’ve studied are threatened by human activities.

Previous posts (2009, 2010) about E. hendersonii.

Siskiyou Wildflowers: Mt. Ashland in July, part 2

So many flowers!

We’ve made two trips to Mt. Ashland (Southern Oregon), on July 22 and 31, along a gravel/dirt forest road noted for wildflowers, and it was a new experience: instead of marvelling at a single flower or small patch of flowers, we saw slopes red with Indian Paintbrush or Scarlet Gilia, places with a dozen different flowers blooming in a 50 foot stretch. On gentle slopes where the snow has recently melted, plants grow so thickly it’s hard to see which leaves belong to which flowers. This is Forest Road 20, for those who might want to visit, and it’s the continuation of the main paved road that goes to the Mt. Ashland ski area. Just keep going, and the road soon turns to gravel and there are meadows of wildflowers on each side. A few miles later the road winds into a drier area with few but choice species, such as various penstemons as well as paintbrush, gilia, eriogonum, and many more. For us novices, identifying what we’ve seen and photographed has been a challenge.

Here are some of the plants we’ve seen on these two trips. Others were included in the earlier “Part 1” post. [Our identifications are the best we have been able to do, but shouldn’t be considered authoritative.]

Castilleja species along a seep.jpg

Castilleja (Paintbrush) along a trickle of water. Not sure of the species, but it doesn’t have the wavy leaves of C. applegatei.

Tiny wildflowers like this one are easy to overlook, hard to identify. For scale, that large pink object on the left is part of my finger. The entire plant was only two or three inches tall, and was growing in a wet sandy area.

Mystery tiny pink flower.jpg

Lilium pardalinum, Veratrum californicum (foliage), .jpg

The striking yellow lilies above are Leopard Lilies (Lilium pardalinum), native to Oregon and California. The spires of white flowers are White Schoenolirion or White Rush-lily (Hastingsia alba; also called Schoenolirion album).

[Etymological note: pardalinum is an adjective from the Greek pardalis, female leopard (meaning spotted like a leopard); Hastingsia after Serranus Clinton Hastings (1814-1893), first Chief Justice of the Supreme Court of California, who helped publish The Botany of the Pacific Coast edited by Asa Gray, Sir Joseph Hooker and J. D. Whitney; album and alba are from the Latin albus (white); Schoenolirion from the Greek schoinos (a rush), + lirion (lily).]

Lilium pardalinum, Leopard Lily CLOSE.jpg

The White Rush-lily is in the lily family; it grows from a bulb, and has the flat strap-like leaves characteristic of many lilies. The mixed species of plants were so dense in some places on Mt. Ashland that it was hard even to find the foliage of a particular species, much less photograph it, but the picture below shows a big area where White Rush-lily alone grew.

Hastingsia alba, foliage.jpg

Aster family purple, and yarrow.jpg

A purple flower in the aster family, but which one? In the background is Achillea millefolium, Common Yarrow.

Out of the ordinary Owl’s Clover

Next is an unusual flower, Toothed Owl’s Clover (Orthocarpus cuspidatus). Owl’s Clovers are in the Snapdragon family along with Paintbrushes (Castilleja genus), Foxgloves, and Penstemons (Beardtongues). Because it is so remarkable, I’m going to include pictures of it from several points of view. From above, looking down on the upright flower.

Owl'sCloverTopView1.jpg

Below, another top view of a rather different-looking individual, missing some of its parts or having developed differently.

Owl'sCloverTopView2.jpg

Two views from the side.

Owl'sClover.jpg

Owl'sClover2.jpg

Owl’s Clovers are not just unusual in appearance, but also in their natural history. They are annuals, and

if the first roots emerging from a germinating Owl Clover seed find themselves near the roots of a neighboring plant of a different species, such as prairie lupine, it will initiate structural connections called haustoria. These are modified roots capable of causing infection in the host plant.

The haustoria invade, literally grow into, the inner tissues of the host lupine’s roots. The Owl Clover haustoria are triggered into formation when the lupine itself exudes chemicals from its roots; that is, the lupine chemically signals its presence to the Owl Clover. The haustoria connections are all completed and in place within a few hours! With functional haustoria in place, Owl Clover’s growth is accelerated. The Owl Clover gains water, minerals and energy from the host plant. Being an annual, Owl Clover has a relatively small root system, so getting extra food really helps its growth rate. This host-parasite relationship is called heterotrophy, the opposite of autotrophy [self-sustaining by photosynthesis]. Being semi-parasitic [capable of both parasitism and if necessary autotrophy], Owl Clover may engage in both at the same time.

Owl Clover, when functioning as a parasite, also takes in toxic chemicals the host plant produces; lupines have alkaloids (remember, plants like lupines are poisonous to livestock). These toxic chemicals are distributed into the Owl Clover’s stem and leaf tissues. The consequences? The presence of the poisonous alkaloids, botanists have learned, reduces the level of feeding (herbivory) by butterfly and moth larvae that favor Owl Clover leaves for their growth and development. Larvae feeding is hindered by the presence of the poisons, and the Owl Clover retains more of its leaf tissue for photosynthesis, an obvious benefit. Butterfly and moth larvae need alternative leaves to eat, but that’s impossible since mature butterflies and moths lay their eggs on developing Owl Clover plants not knowing if the leaves are toxic or not. Larvae, it’s assumed, survive better, and develop to maturity by feeding on Owl Clovers that are not parasitizing a lupine or other toxic host plant.

There’s one remaining piece of this interesting relationship to be told: studies suggest that Owl Clover’s flower nectar is not contaminated by the toxic alkaloids. Perhaps the alkaloids are detoxified by some means before reaching the nectar glands. Why is this important? Visiting pollinators, such as hummingbirds or bumble bees, can harvest the Owl Clover’s nectar reward without suffering ill effects. [Source article by Jim Habeck, professor emeritus of botany at the University of Montana]

Representations of the seeds and seed-pods of wildflowers seem hard to find; after the colorful floral show is over, the photographers lose interest just as the pollinating bees and hawkmoths do. But in my Owl’s Clover wanderings I came across photos here of the seeds and pods of two species. Looking at the flowers, I wouldn’t have expected this:

Orthocarpus purpurascens SEED POD.jpg

Seeds and seedpod of Purple Owl’s Clover (Orthocarpus purpurascens, also called Castilleja exserta). Not the species we saw, but it has a similar flower so probably the seedpods are similar.

[Etymological note: Orthocarpus, from the Greek ortho (straight, upright) + carp- (fruit, seed); cuspidatus, from the Latin cuspis (lance, point); purpurescens, becoming purple, from the Latin purpura (purple); Castilleja, named for Domingo Castillejo (1744-1793), Spanish botanist and Professor of Botany in Cadiz, Spain; exserta, from the Latin exsertus, past participle of exserere (to thrust out, from ex- + serere to join).]

Wavy-leaf Paintbrush and hand signals

Castilleja applegatei, Wavy-leaf Paintbrush.jpg

This, I think, is Wavy-leaf Paintbrush (Castilleja applegatei)

Castilleja applegatei, Wavy-leaf PaintbrushLEAVES.jpg

Here are the wavy-edged 3-lobed leaves. Some leaves are single, not lobed.

And this is my hand signal to tell myself that the flower felt “sticky”! I have found I have trouble remembering these things days later when I am looking over 300 photos, sometimes of more than one species of the same genus. Now which one had the sticky flowers? It’s characteristic of some Paintbrushes and not others, so knowing helps to identify these tricky guys.

Another difficulty was that if two similar species were photographed one after the other I couldn’t be sure where the first one ended, in the series of photos. Now when I finish photographing one species I take a “spacer” photo of my foot in its red sandal. Sounds odd but seems to be helping.

[Etymological note: Castilleja, named for Domingo Castillejo (1744-1793), Spanish botanist and Professor of Botany in Cadiz, Spain; applegatei, named after Elmer Applegate (1867-1949), a student of the flora of Oregon best known for his monograph of trout lilies (Erythronium).]

Thistle, Buckwheat, Roses and more

Cirsium scariosum, elk thistle CLOSE.jpg

Above is a close-up of the center of a flat-growing thistle, called Elk Thistle (Cirsium scariosum). All our other local thistles send up tall stems defended with spiky leaves and ending in one or more flowers, but this one grows and flowers at a height of just 2 or 3 inches. The plants we saw were up to a foot in diameter.

Cirsium scariosum, elk thistle.jpg

[Etymological note: Cirsium from the Greek kirsion (a kind of thistle) in turn from kirsos (a swollen vein or welt) because thistles were often used as a remedy against such things; scariosum from “New Latin” (=concocted by moderns) scariosus c. 1806, origin uncertain (dry and membranous in texture, chaffy, brown).]

Eriogonum umbellatum, Sulphur-flower Buckwheat.jpg

Sulphur-flower Buckwheat (Eriogonum umbellatum). The genus Eriogonum is in the same family (Polygonaceae) as the field crop buckwheat, and the seeds of some species are important for wildlife. The name ‘buckwheat’ or ‘beech wheat’ comes from its triangular seeds, which resemble the much larger seeds of the beech nut from the beech tree, and the fact that it is used like wheat [Wikipedia].

Eriogonum umbellatum, Sulphur-flower Buckwheat CLOSE.jpg

[Etymological note: Eriogonum, from the Greek erion (wool) and gony (knee or joint), so called because the jointed stems are covered with hair; umbellatum, from the Latin umbella (sunshade), diminutive of umbra (shadow), and refers to the arrangement of the flowers which arise in a head from a central point, i.e. bearing an umbel.] Now that I know this odd bit about the meaning of Eriogonum, I’ll be looking for those “hairy knees” on wild buckwheat plants in future.

Rosa woodsii, Woods' rose.jpg

Small patches of these vivid pink roses were blooming in areas of loose dry soil, and the plants were only a few inches tall. I think it’s Wood’s Rose (Rosa woodsii).

[Etymological note: Rosa, from the Latin rosa (rose), in turn derived from the Greek rhodon (rose); woodsii, after American botanist Alphonso Wood (1810-1881).]

Penstemon azureus, azure penstemon.jpg

We think this Penstemon is Azure Penstemon (Penstemon azureus). At their peak the flowers must have been glorious.

Penstemon azureus, Azure penstemon, LEAF.jpg

The broadly oval leaves are distinctive, and seem to clasp the stem as described for this species.

[Etymological note: Penstemon from Greek penta- (five) + Greek stēmōn (thread, here meaning stamen); azureus (of a deep blue color) from Arabic via Old French azaward which developed from Arabic lāzaward, from Persian lāzhuward, of obscure origin—in Old French the initial ‘l’ was dropped from the word proper and turned into the definite article “le” as if it were French: l’azaward].]

Here is a beautiful penstemon we are not able to identify.

Penstemon, unknown species 1 FLOWERS.jpg

Penstemon, unknown species 1 CLOSE.jpg

The difference in flower color between these two pictures is due to light conditions; the one taken in full sunlight is actually a bit washed out compared to how the colors appeared to my eye, and the one taken in shade is more accurate.

Penstemon, unknown species 1 LEAF.jpg

The buds and long narrow leaves of this penstemon.

A second unidentified penstemon.

Penstemon unknown species,#2 CLOSE .jpg

The leaves are quite different from the first unidentified one.
Penstemon unknown species,#2 .jpg

We saw many more flowers on these two trips, but I’ll stop with this one, Western Blue Flax or Prairie Flax (Linum lewisii, also called Linum perenne var. lewisii).

Linum lewisii (Linum perenne var. lewisii), Lewis flax, blue flax, prairie flax2.jpg

Western Blue Flax is very similar to the European Flax plant from which linen is made; indeed, some consider the two a single species, Linum perenne. Native American peoples used flax fiber for cordage and string, as well as for mats, snowshoes, fishing nets and baskets.

Linum lewisii (Linum perenne var. lewisii), Lewis flax, blue flax, prairie flax CLOSE.jpg

[Etymological note: Linum from Latin linum (flax, linen); lewisii, for Captain Meriwether Lewis (1774-1809) of the Lewis and Clark expedition of 1804-1806; perenne from Latin perennis (lasting through the year or years) from per- (through) + annus (year), botanical sense of “Remaining alive through a number of years”.]

Mt. Ashland flower scene.jpg

View of Mt. Shasta from Mt. Ashland, July.jpg

View of Mt. Shasta from Mt. Ashland.

Siskiyou Wildflowers: Mt. Ashland in July, part 1

On July 22nd we left our usual nearby wildflower haunts and headed to Mt. Ashland, drawn by a brochure given us by the local ranger station. It’s called Wildflowers of Mount Ashland and the Siskiyou Crest from Mount Ashland to Cow Creek Glade, and shows small photos of 82 different flowers that may be found along Forest Road 20. There’s also concise information about each one as to wet/dry/shade habitat, location on the road, and height. The Siskiyou Chapter of the Native Plant Society of Oregon produced this, and did a great job. We’ll be joining, to support such efforts.

The day on the mountain was perfect: we left behind the valley where the temperature was headed for 100°, for an airy sunny breezy place from which Mt. Shasta was visible.

Mt. Shasta.jpg

There were still a few areas of snow, and meadows moist from springs and snowmelt.

A small seep of water flows down this crease in the land, with plants most dense where the ground levels out a bit.

Water seep line.jpg

Habitats vary from dry and rocky to wet at this time of year. Peak flowering time is July and August. We saw many wildflowers—not all 82, but we’ll go back in a couple of weeks and see what else has appeared. Here’s a first installment of what we saw.

Ipomopsis aggregata, Scarlet Gilia #  - 06.jpg

The most numerous species we saw was Scarlet Gilia (Ipomopsis aggregata). There were isolated plants, there were swathes of red. It was hard to believe something so bright and beautiful could be so abundant. [Etymological note: Ipomopsis is said to be from a Greek root meaning “striking in appearance,” but no one seems to be able to substantiate it; the species name means “flocking together,” or growing in groups, clustered, from Latin gregis (a flock) and the suffix -gate from agere (to set in motion, to drive, to lead).

Ipomopsis aggregata, Scarlet Gilia en masse.jpg

Ipomopsis aggregata, Scarlet Gilia CLOSE.jpg

Below is a yellow paintbrush, called Cobwebby Paintbrush, (Castilleja arachnoidea). Its leaves are narrow—the wide tapering hairy leaves belong to another plant that grew close in among the Castilleja. [Etymological note: named for Professor Domingo Castillejo (1744-1793), a Spanish botanist and instructor of botany at Cadiz, Spain; from Greek arachnes (spider), arachnion (spider web), like a spider’s web.]

Castilleja arachnoidea.jpg

Another Castilleja sp., but which one? Wavy-leaf Paintbrush (C. applegatei) was pictured in our guide to Mt. Ashland, but this plant did not have the distinctive wavy leaves.

Castilleja Sp. A.jpg

The next two photos show a small plant called Pussy Paws, for the soft fuzzy flowerheads(Calyptridium umbellatum). The second one pictured is the pink variety. [Etymological note: from the Greek kaluptra (a cap or covering) because of the way the petals close over the fruit; umbellatum meaning “having an umbel”, botanical term for a cluster of flowers with stalks of nearly equal length which spring from about the same point, like the ribs of an umbrella, and derived from Latin diminutive of umbra (shadow).]

Calyptridium umbellatum, Pussy Paws .jpg

Calyptridium umbellatum, Pussy PawsPINK.jpg

Two orchids were prize finds, in shady spots. Both are Uncommon, according to Turner. First the oddly named Short-spurred Rein Orchid (Piperia unalascensis). Living in the Pacific Northwest, even in a dry part of it, one wants to call this a “Rain” orchid, but all sources agree it is “Rein”. One writer alleges that it’s so named for the strap-like lower lip on each tiny flower, but I don’t really see it. [Etymological note: named after Charles Vancouver Piper (1867-1926), an agronomist with the US Department of Agriculture and an expert on Pacific Northwest flora; species name refers to Aleutian Islands (Unalaska) where species was first found. The Unangan people, who were the first to inhabit the island of Unalaska, named it “Ounalashka” meaning ‘Near the Peninsula’, according to Wikipedia. ]

Piperia unalascensis, Short-spurred Rein Orchid CLOSE.jpg

Below, not in very good focus, is the entire plant next to an Indian Paintbrush (Castilleja), species unknown.

Piperia unalascensis, Short-spurred Rein Orchid .jpg

The White Bog Orchid (Platanthera leucostachys) below It’s also called the Sierra Bog Orchid. The palmate leaf and thick stalk on the right belong to a lupine. [Etymological note: from the Greek “platanos” (broad or flat), and Greek anther (from Greek anthera, feminine of antheros (flowery) from anthos (flower), here anther is the botanical term, referring to the upper part of the stamen, containing pollen; species name from the Greek leukos (white) and Greek stachus (ear of grain or a spike) in reference to the spike-like form of the flowers.]

White bog orchid, Platanthera leucostachys   - 1.jpg

White bog orchid, Platanthera leucostachys CLOSE.jpg

Orange Agoseris (Agoseris aurantiaca), bright as the sun. [Etymological note: Agoseris was the Greek name for a related plant “goat chicory” and the word is usually seen as deriving from derived from Greek aix (goat) and seris (chicory). Some members of the Agoseris genus have woolly stems or leaves, possibly relating to the “goat” connexion. Species name aurantiaca from the Latin (orange, orange-yellow or orange-red), ultimately from aurum (gold, the metal).]

Agoseris aurantiaca, Orange AgoserisCLOSE.jpg

Several delphiniums were spotted, but not yet identified. Here’s one.

Delphinium A- 2.jpg

Its leaf is small and three-lobed.

Delphinium A- 2LEAF.jpg

There are lots of yellow daisy-like flowers in the world, but not all have the tenacity of this one which seems to spring from the dry rock. It is Oregon Sunshine (Eriophyllum lanatum). [Etymological note: from the Greek erion (wool), phyllum (leaves); species name from the Latin lanatus, (woolly). Very very woolly!]

Eriophyllum lanatum, Oregon Sunshine  - 1.jpg

Western Wallflower (Erysimum capitatum) is another bright-flowered plant that does well in dry and disturbed soils. That trait may account for the common English name, supposedly derived from growing at the foot of walls in Europe. I suppose they’re rather like the hollyhocks you see springing up in the hard dry soil in front of abandoned sheds or at the edges of alleys. [Etymological note: from the Greek eryomai (to help or save) because some of the species supposedly had a medicinal value ; species name from Latin capitātus (having a head) from capit-, (head), refers to the way the flowers form in a head-like cluster.]

Erysimum capitatum, Western Wallflower # 2.jpg

It’s in the Mustard Family, a group called Cruciferae meaning “cross-shaped”, referring to the arrangement of the flower petals.

Erysimum capitatum, Western Wallflower.jpg

More soon!

Siskiyou wildflowers we found today

We walked along a dirt road above the Applegate River. Warm and dusty, with the cool green river below. On the far side of the river there are houses, and tied up below one was a gas-powered dredge for sucking up sand and silt from the bottom or edges of the river, in search of gold. Any gold around here is powder or very small pieces; nothing you would think of as a nugget is likely to be found. Since the moratorium on dredging in the rivers of California more dredgers are mucking up our rivers.

dredge on the river.jpg

The first wildflower we saw was the rather spectacular Blazing Star (Mentzelia laevicaulis).

Mentzelia laevicaulis, Blazing star1.jpg

This plant likes dry gravelly roadcuts such as this one, and is found from British Columbia south through much of the West. Accounts say the flower is fragrant but we didn’t notice that.

The buds are a pale dawn yellow. Or the color dawns should be.

Mentzelia laevicaulis, Blazing star, flower buds.jpg

The leaves are distinctive: hairy and scalloped.

Mentzelia laevicaulis, Blazing star leaf close-up.jpg

Mentzelia was named by Linnaeus in honour of Christian Mentzel (1622-1701), a German physician, botanist and lexicographer. The epithet laevicaulis (laevi = smooth + caulis = stalk) refers to the comparatively smooth stems of this species in comparison to other Mentzelia species.” For this information on etymology, often impossible to find, I am indebted to the University of British Columbia’s Botany Photo of the Day site.

The flower is somewhat similar to one we saw back in mid-June, Yellow or Western Salsify (Tragopogon dubius), below. But Yellow Salsify is introduced, not native, and regarded as invasive in many areas. The root is “edible raw (slightly bitter, celery-like taste with a hint of cucumber) and cooked (smells like parsnips). The plant exudes a milky latex when cut.” Another species, T. porrifolius, has been known since Roman times for its edible roots and young shoots, and even cultivated. Europeans who introduced T. porrifolius to North America too, where it’s considered an “agricultural weed”, not quite as bad as “invasive”.

Tragopogon dubius  -Yellow Salsify,Western Salsify -flower.jpg

The Yellow Salsify leaf is narrow, not scalloped, and smooth rather than hairy.

Tragopogon dubius  -Yellow Salsify,Western Salsify - leaves.jpg

Large patches of Rabbit-Foot Clover (Trifolium arvense) lined the road. This is another European introduction.
Rabbit-Foot Clover.jpg

We were too late to see any with fresh blooms, so here they are from A Photo Flora of the Devon and Cornwall Peninsula.

Rabbit-foot clover, Trifolium arvense.jpg

Among the patches of Rabbit-foot Clover there were many spiderweb constructions like this one, a foot wide or more,

Spiderweb, flat with tunnel 1.jpg

consisting of layers of horizontal web and a funnel at the back where the spider awaits. While we did not see the spiders, the webs are said to be characteristic of species in the genus Agelenopsis, which are called Grass Spiders or Funnel Weavers. They’ve recently been found to be venomous, with a toxin that affects substances involved in muscle movement in insects and in mammals, though humans would seem to have little to worry about unless walking barelegged through the webs and stirring up the spiders. However, the toxins might have medicinal potential (anti-seizure medication). There are good photos of the spiders here along with information at bugguide.net.

Here are the yellow blooms of what we are sure is some species of Eriogonum, which includes plants often known by some variation of the common name “Wild Buckwheat” (although they have nothing to do with the crop plant that provides buckwheat flour).

Eriogonum spp..jpg

The flowers were borne on leafless thick reddish stems.

Eriogonum spp. base of leafless bush.jpg

We tried to figure out which Eriogonum this was, but were having no success. Finally we came across this remark about another unidentified Buckwheat,

This plant has frustrated me for years — it is so very common here but I’ve yet to find a picture or a description in any of my layman’s field manuals. However, my favorite A Field Guide to the Plants of Arizona by Anne Orth Epple, did have this to say: almost all species of eriogonum are difficult to identify, even for the expert botanist. For the amateur, simply recognizing wild buckwheat as such is an accomplishment. So there! Epple says that there are 53 species of eriogonum in Arizona.

Okay, we’ll rest on our laurels of having tagged it as a Buckwheat! The author above goes on to say of her plant, “As the season wears on, the flowers gradually turn a brilliant rust color”, and that seems to be true of ours as well, perhaps another Eriogonum characteristic.

Eriogonum spp. bush.jpg

One final plant turned out to be another clover.

White sweet clover, Melilotus albus .jpg

This is White Sweet Clover (Melilotus albus).

White sweet clover, Melilotus albus -closeup.jpg

Pretty and delicate looking, but another European introduction, for cattle forage, which has turned out to be invasive.

And by then Jack the mastiff thought it was time to call it quits, even though he’d been down to the river for a drink.

Jack thirsty, tongue lolling.jpg

He drank from his water dish back at the car, and then supervised while we drove home.

We brake for butterflies

Butterflies everywhere in the air! so many you have to drive about 5 miles an hour, letting the current of your progress gently push them out of the way. That’s how it was one morning last week, on the paved forest road where we often walk. By 3 pm it would be 100°. Though there were still wildflowers in bloom, these butterflies seemed not to be feeding, but mostly just flying and chasing one another. Breeding season? One did land for a moment on Dan’s finger and another swooped at it aggressively, over and over.

California Sister butterfly,one flying at another.jpg

California Sister butterflies (Adelpha bredowii), ventral view.

As before, in a different location on this road, we saw scores of the California Sister butterfly (Adelpha bredowii) but this time none of the Lorquin’s admiral (Limenitis lorquinii) seen then. Swallowtails were present too, like sunlight in flight, but in small numbers. Unlike the others, the swallowtails never lighted for long either on vegetation or on the road, where the California Sisters clustered to get minerals from visible animal scat or from remains too small for us to see.

California sister.jpg

California Sister butterfly, dorsal view, on the road.

California sisters butterflies landing on road.jpg

Ant pulling butterfly.jpg

This ant was pulling along the body of a California Sister butterfly. It would move the butterfly an inch or two, then stop and scurry around looking (I thought) for a more effective place to grab on.

Swallowtail butterflies

The swallowtails never let us get close enough for a really good look or photo, and we may even have seen more than one species. Dan, whose eyes are better, says that most were a pale yellow. the others brighter. Of the three found in our area, one is a species called the Pale Swallowtail (Papilio eurymedon) that uses Ceanothus spp. for its larval host plant, and Blueblossom ceanothus (Ceanothus thyrsiflorus) is a common flowering shrub here. Very pretty too, growing to 6 feet or more in height and flowering in varying shades of blue and lilac. Most are past their peak of bloom now, beginning to fade or entirely withered; these photos are from June.

canothus.jpg

Ceanothus thyrsiflorus & mating beetles.jpg

The British biologist J. S. B. Haldane was engaged in discussion with an eminent theologian. ‘What inference,’ asked the latter, ‘might one draw about the nature of God from a study of his works?’ Haldane replied: ‘An inordinate fondness for beetles.’ Indeed, of the 1.5 million described species on the planet, 350,000 are beetles, more species than in the entire plant kingdom. So I didn’t even try to identify the mating beetles in the photo above, but Dan picked up Insects of the Pacific Northwest (by Haggard and Haggard) and found them easily: Anastrangalia laetifica, the Dimorphic Long-horned Beetle! The female’s red wingcovers are visible on the right side, beneath the male’s all-black back.

This is the Pale Swallowtail, below. [Photo by Franco Folini, from flickr]

papilio eurymedon2.jpg

Different life stages of the Pale Swallowtail caterpillar are shown here, and for the Anise Swallowtail here. Caterpillars can have quite different appearances, as they pass through successive moults (stages called instars), and so the one illustrated in your field guide for a given species may not look at all like the one you find.

The other Swallowtails likely to be seen here in Southwestern Oregon are the Anise Swallowtail (Papilio zelicaon) and the Western Tiger Swallowtail (P. rutulus). Oregon’s state insect is the Oregon Swallowtail (P. oregonius, sometimes called P. bairdii) but it’s found in the dry sagebrush canyons of Eastern Oregon and Washington along with its caterpillar host plant Tarragon or Dragon’s-wort (Artemisia dracunculus). Our culinary tarragons are varieties of this same species.

Siskiyou wildflower roundup

There are quite a few wildflowers we’ve photographed on our walks, and identified, that I haven’t had time to research and write about. Here are some, with just species, date seen, and brief comments. All are natives unless otherwise noted.

We are very much amateur botanizers and we don’t key out these plants, so our identifications are not authoritative and we welcome helpful comments from more experienced folks. Each species account in this post is followed with a link to a page about the species, on the Pacific Northwest Wildflower site of Mark Turner, who really is an expert. In fact he and Phyllis Gustafson “wrote the book”, Wildflowers of the Pacific Northwest (Timber Press Field Guide). If you have an interest in PNW wildflowers, or are a hiker/fisher/etc., you should go out and buy this book right now, preferably from your local independent bookstore. Knowing more about the flowers you see really adds to your enjoyment of the outdoors.

Daisies& Oaks.jpg

This pasture, not far from Applegate Lake, has been invaded with a daisy-type flower—all the white areas in the photo above.

Anthemis cotula.jpg

It’s probably Anthemis cotula, common name Stinking Mayweed. The leaves of this species have an unpleasant odor, but there was a slippery gravel slope down to the edge of the field, and we didn’t get close enough to confirm that. Next time.

It’s been introduced, and is a native of Eurasia. Find in Turner here. [photographed July 4, 2010]

Blue dick closeup.jpg

Above is Dichelostemma capitatum, common names Common Brodiaea or Blue Dicks. This was taken back in on May 4, 2010, but I’ve seen others in bloom at higher elevation (around 2000 ft) even now.

Blue dick leaves.jpg

Height varies from 6 to 27 inches, and leaves are flat.

Blue dick flowers.jpg

Find in Turner here.

The plant below is a native shrub that also serves as an ornamental, and I saw it in bloom last week in Portland (OR). It’s found from British Columbia south through California, and also in Missouri and Tennessee. If we are to see it in our area it would be in sunny but wet spots.

Spiraea douglasii full plant.jpg

This is Spiraea douglasii, common name Rose Spiraea or Hardhack.

Spiraea douglasii.jpg

I was unable to resist the temptation of investigating what “hardhack” means, but all I found was that the same common name is also applied to unrelated species, such as Potentilla fruticosa (back in 1885, here), Collinsonia canadensis, and Arrowwood Viburnum (Viburnum dentatum) as well as to other Spiraea spp. But this may be a clue: another common name for Spiraea douglasii is Ironwood, and Native Americans used the wood for mat-making needles, spoons, and spears. Photographed July 2, 2010 in Portland OR. Find in Turner here.

Below is Arnica cordifolia, common name Heartleaf Arnica.

Heartleaf Arnica, Arnica cordifolia .jpg

Photographed May 9, 2010. Find in Turner here.

An earlier post showed Ribes roezlii, the Shiny-leaved Gooseberry. Below is Ribes sanguineum, Red-flowering Currant.

Ribes sanguineum.jpg

The genus Ribes includes currants and gooseberries. What’s the difference?

Gooseberries and currants, although closely related, can easily be identified by examining the canes and fruit color; gooseberry canes normally produce a spine at each leaf node and bear roughly grape-sized berries singly or in groups of 2 or 3, while currant canes lack spines or prickles and bear 8 to 30 smaller fruit in clusters. Figure 1. Cane and fruit of (A) Gooseberry and (B) Currant.

Currant-gooseberry drawing.jpg

Drawing and text from University of Minnesota Extension page.

Photographed May 6, 2010. Find in Turner here.

Next is one of the thistles, a plant group which people find hard to appreciate. But this one is unlikely to show up in your backyard or pasture, and perhaps that will make it easier. We think it is Cirsium occidentale, Snowy Thistle—Turner calls it uncommon—and it is growing in a dry rocky area next to a road. We’ve seen the plant re-appear there for perhaps a decade and its seed has only produced two other plants in that time.

Snowy thistle roadside.jpg

The plant blends in with the greyish stones, having greenish-grey leaves and also a heavy coat of hairs like spiderwebs. Another of its common names is Cobweb Thistle.

snowy thistle closeup.jpg

Perhaps the dramatic white pollen, seen below, is the origin of the “snowy” part of the common name.

Snowy thistle macro1.jpg

Photographed June 21, 2010. Find in Turner here.

Hydrophyllum fendleri, Fendler’s Waterleaf, is a moisture-loving plant with large leaves and fuzzy flower-heads.

Hydrophyllum fendleri Fendler's waterleaf - 1.jpg

It has a spreading habit and often grows where vegetation is lush, so that other plants cover it up.

Hydrophyllum fendleri COSEUP.jpg

Photographed on May 2, 2010. Find in Turner here.

Last, this small sedum.

Sedum stenopetalum whole plant.jpg

This is Sedum stenopetalum, Narrow-leaved Sedum. Flowers are yellow according to standard sources, but Turner shows white as well. Photographed end of June, 2010. (Yellow blossom in lower left, below, is clover.) Find in Turner here.

Sedum stenopetalum, Narrow-leaved Sedum.jpg

Botanical prints of threatened flora

For those of us who find beauty in plant forms, the botanical illustrations available online are an always-blooming visual pleasure. Here are two that came my way via a mention in today’s Botany Photo of the Day.

First, a gallery of members’ works on the site of the The American Society of Botanical Artists, well worth a visit. There are only a couple of examples for each artist, but you can follow links to websites for many of those represented.

Ceanothus_spinosus.jpg
Detail, Mountain lilac or Greenbark ceanothus (Ceanothus spinosus), watercolor © Chris Chapman. Source [this is a frames page, click on artist’s name in list at side].

Also, the ASBA has made available online nearly all of a touring exhibition called Losing Paradise? Endangered Plants Here and Around the World.The exhibit is at The New York Botanical Garden through July 25 2010, and at the Smithsonian’s National Museum of Natural History in DC, August 14th through December 10th.

This ASBA blog has about thirty of the 44 artworks featured in the exhibition (another is added every few days), and each is accompanied by the text from the exhibit catalog: a description of the plant and its situation, and commentary from the artist. (Elsewhere, the ASBA also plans to post all 125 pieces that were submitted for the exhibit, with shorter text; only about a dozen are up now.)

Here are a few samples from the blog. The images on the page are thumbnails, be sure to look at the much larger versions.

PaintedTrillium.jpg

Detail of Painted trillium (Trillium undulatum), mixed media, © Anne Marie Carney, US.

Silene_regia.jpg

Detail of Royal catchfly (Silene regia), watercolor © Heeyoung Kim, US.

A perennial wildflower of the US Midwest; its bright red flowers are pollinated by butterflies and hummingbirds.

Marsh_gentian.jpg

Detail, Marsh gentian (Gentiana pneumonanthe), watercolor © Gillian Barlow, UK.

Marsh gentian is being studied all over northern Europe, mainly because of its fascinating relationship with the rare Alcon blue butterfly (Phengaris alcon). Adult Alcon blues lay their eggs on the outside of marsh gentian flowers, and when the larvae hatch, they emerge inside, where they begin to feed on the flower. After molting 3 times, these caterpillars chew through to the outside of the flower, then lower themselves to the ground on a “silken thread”. The caterpillar awaits the arrival of a Myrmica ant, which adopts it and carries it back to the ant’s nest. There it is fed by the ant colony through the fall and winter, growing quite large. In spring it forms a chrysalis, then emerges and exits the colony as quickly as it can to avoid being killed by the ants.

Actually, it’s even odder than that…

The larvae emit surface chemicals (allomones) that closely match those of ant larvae, causing the ants to carry the Alcon larvae into their nests and place them in their brood chambers, where they are fed by worker ants and where they devour ant larvae.

When the Alcon larva is fully developed it pupates. Once the adult hatches it must run the gauntlet of escaping. The ants recognise the butterfly to be an intruder, but when they go to attack it with their jaws they can’t grab anything substantial as the newly emerged adult butterfly is thickly clothed in loosely attached scales.

Over time, some ant colonies that are parasitized in this manner will slightly change their larva chemicals as a defense, leading to an evolutionary “arms race” between the two species.

The Phengaris alcon larvae are sought underground by the Ichneumon eumerus wasp. On detecting a P. alcon larva the wasp enters the nest and sprays a pheromone that causes the ants to attack each other. In the resulting confusion the wasp locates the butterfly larva and injects it with its eggs. On pupation, the wasp eggs hatch and consume the chrysalis from the inside. [Wikipedia]

Phengaris_alcon.jpg

Alcon blue butterfly (Phengaris alcon). Source.

Since the butterfly lays its eggs right on the flower, it may be serving the gentian as a pollinator, if it visits more than one plant.

Below, the Santa Cruz Cypress.

Santa_Cruz_Cypress.jpg

The endangered Santa Cruz Cypress, Cupressus abramsiana, is found only in the coastal Santa Cruz Mountains of central California, where it grows in gravelly, sandy soils above the fog belt, with chaparral and other evergreen species. This tree, once abundant, succumbed over the years to vineyard and home development, and road building. Only five populations totaling a few thousand individuals remain, all within a 15-mile stretch of the coast. It was Federally listed in 1987. It is still threatened by competition with non-native plants such as pampas grass and French broom, insect infestation and hybridization with other cypress species.

Visit the ASBA blogspot to see the rest of 30 or so. The catalog of the exhibit, from which these texts are excerpted, is on sale for $29.95 + s & h.